
Security is ROT!



Security is rot!

Regulation

TechnologyOrganisation

Fuel

OxygenTemperature

Rot in Dutch: rotten, squad, putrid



Regulation



It has been chef sache all along
General Data Protection Regulation 
(GDPR)
Article 5

"The controller shall be responsible for, and be able to demonstrate compliance 
with, paragraph 1 (‘accountability’).”

Article 24

"Taking into account the nature, scope, context, and purposes of processing [...], the 
controller shall implement appropriate technical and organizational measures to 
ensure and demonstrate that processing is performed in accordance with this 
Regulation.”

Article 32

"Taking into account the state of the art, costs of implementation [...] the controller 
and processor shall implement appropriate technical and organizational measures 
to ensure a level of security appropriate to the risk."



NIS2 Directive

Article 20
"Member States shall 

ensure that members of 
the management bodies 

of essential and important 
entities are required to 
follow training, and are 

responsible for the entity’s 
compliance with 

cybersecurity risk 
management measures."



Management 
Responsibility

• ISO/IEC 27001 (Information Security): "Top 
management shall establish, implement, maintain 
and continually improve an ISMS..."

• Policy, objectives, and responsibilities

•  BIO (Baseline Information Security for Government): 
"The organization is structured to ensure information 
security is manageable."

• Management must be ‘in control’

• NEN 7510 (Healthcare sector): "Management is 
responsible for implementing information security..."



What should management do?

• Define goal

• Define and approve policies

• Determine organizational structure
• Define roles, tasks, authorities
• Establish governance and security ownership

• Assign responsibilities
• Who is responsible for what?
• Use of RACI models, job descriptions

• Monitor and improve

• Conduct reviews, audits, and evaluations

• 'Security is a management responsibility, not just an IT task.'



Who’s responsible?

Who’s 
responsible?

The CEO or 
top executive 
is ultimately 
accountable



Organisation



An abritrary incident 
Friday

• Karel (CISO) is on a short vacation.

• Phishing incident multiple accounts 
compromised.

• Backup security staff unreachable; Karel 
joins the crisis call himself.



Later that day

• Anti-phishing tool was disabled months ago 
by an IT staffer

• Advice: reset accounts, investigate impact, 
inform the board.

• Business unit refuses full cooperation (“too 
much hassle”).



A couple of hours later

• Hundreds of thousands mails sent

• Karel suggests to inform the board

• Serious damage: company domain 
blacklisted due to outgoing spam

• Karel acts quickly, starts getting the domain 
off blocklists

• Advice largely ignored; incident not reported 
up the chain



An arbritrary incident - 
Sunday

• Karel receives a meeting invite from ad-
interim manager

• Prepares a list of key points to clarify his 
actions.



Monday – the meeting

• Manager accuses CISO of 
being:

• Pushy
• Questioned if incidents are his 

role
• Not clear about the role
• even “blackmailing”
• Incorrect on advise. Resetting 

an account after several days is 
usefless

• Asks Karel to resign as CISO 
with some time to think

• Citing “health reasons” for 
ongoing tasks.



The aftermath

• Sick leave

• Legal conflict

• CISO had to leave the company





Security triangle
Regulation

TechOrganisation



Who’s responsible?

Who’s 
responsible?

The CEO or 
top executive 
is ultimately 
accountable



So if… if 
responsibilities 
are vague…



Who are you 
really angry 
at?



Karel was talking to a 
manager

• Karel wasn’t talking to the board

• There was a non-board level in between

• This led to risk filtering

• Manager was clearly incompetent on 
information security



If you're not at the table, you're on the 
menu



Karel wasn’t a chief 
(as many CISO’s 
aren’t)
• You’re not listed in the Kamer van 

Koophandel as responsible

• You’re not responsible for security

• You’re not protected from getting 
sacked

• His lawyer used a perfect term: 
CISO-employee

• Don’t behave like one



When you are 
talking to the 
board



Karel’s safe workplace

✓ Role Ambiguity and Unclear Responsibilities

✓ Lack of Managerial Support

✓ Blame and Negative Organizational Culture

✓ Disrespect for Professional Expertise

✓ Negative Feedback and Workplace 
Intimidation

✓ Undermining Autonomy and Decision-making

✓ Stressful Environment and lack of trust



Insecurity at work (studies)
• Lack of structure leads to insecurity 

about roles and responsibilities 
leading to miscommunication, stress 
and fear

• Lack of trust leads to lack of 
engagement, feelings of isolation and 
unsafety. That causes less openess, 
transparency.

• Lack of structure leads to more 
changes in the organization adding to 
the uncertainty.



Cost of information security
• Dutch Cyber Security Council recommends allocating 10-20% of 

ICT budget
• Investment level depends on:

• Organization's risk profile
• Sector (Health, Financial sectors higher risk)
• Company size (SMEs relatively higher costs)

% ICT budget Low Medium High Very High

0-5%

5-10%

10-15%

15-20% * *

20-25% *

*For SMEs: at least use 'High' as a baseline.



Technology



Flying past venus
• P-37 / Mariner R-1

• 9 kilograms

• 54,000 components

• Maintain contact with Earth for 15 
weeks

• Launch 22 July 1962 

• Lots of toys on board:
• Microwave Radiometer
• Infrared Radiometer
• Fluxgate Magnetometer
• Cosmic Dust Detector
• Solar Plasma Spectrometer
• Energetic Particle Detectors
• Ionization Chamber



At launch

• Range Safety Officer enter self-
destruct order at T+294.5 (4:54.30)

• Damage $18.5 million (now some 
$192 million)

• Software bug was missing: -



Phobos 1

• Russian mission to view Mars and the moons Phobos and Deimos

• Journey of 200 days 

• Two correction moments between days 7 and 20 and between 185 
and 193.

• 2 September 1988 - no signal from the probe

• Cause a missing character: -

• A computer, which was supposed to check all commands failed

• Time pressure caused test code to remain in the system (EPROM



June 4th 1996 
Photo: ©ESA



Ariane 4 5

• Normal behaviour 36 seconds

• Simultaneous failure of the two inertial reference systems

• Incorrect turning of the nozzles of the boosters and the 
Vulcain engine

• Abrupt change of course

• The self-destruction of the rocket launcher.

• The rocket software had been inherited from the Ariane 4 
rocket gave erroneous signals to engines

• The software error occurred because a 64-bit floating point 
value was incorrectly converted to a 16-bit integer, leading to 
an "integer overflow"

• Damage approximately: €500 million



Onvoldoende systeemtests
"The failure of Ariane 501 was caused by 
the complete loss of guidance and 
attitude information 37 seconds after 
start of the main engine ignition sequence 
(30 seconds after lift-off). This loss of 
information was due to specification and 
design errors in the software of the 
inertial reference system. The extensive 
reviews and tests carried out during the 
Ariane 5 development programme did 
not include adequate analysis and 
testing of the inertial reference system or 
of the complete flight control system, 
which could have detected the potential 
failure."



Bad testing

• Knight Capital: In 2012, US trader Knight Capital 
implemented new code with a hidden flaw

• Untested old functionality was accidentally activated, 
causing the software to automatically buy $7 billion 
worth of shares in 45 minutes

• The company had to sell those positions at a huge loss 
(damage $440 million) 

• Was fined $12 million dollars

• Cause: a simple human error during deployment and 
insufficient testing of the production situation



Symptoms of bad 
software

• Security leaks: OWASP Top 10 - the same vulnerabilities for years.

• Visual: graph of number of data breaches per year / OWASP Top 10 
trends.



Chaos Report – 
Standish Group 
• 4 November 2024

• 50,000 projects analysed: 

• 31% successful (on time, on budget, 
satisfactory result)

• 50% not on time, not within budget 
and/or not satisfactory result)

• 19% are terminated early



Zibdo survey is more negative 

• 31.1% of software projects are cancelled before 
completion

• 52.7% exceed original budget by an average of 
189%

• 16.2%, of projects are delivered on time and on 
budget



Bad software an 
expensive hobby
• CISQ The Cost of Poor Software Quality in the US: 

A 2022 Report

• By 2022 already costs $2.41 trillion 
(2,410,000,000,000) overall and $1.52 trillion 
(1,520,000,000,000)

• Losses from cybercrime due to existing software 
vulnerabilities soared

• Problems in the software supply chain involving 
underlying third-party components (especially 
Open Source Software, also known as OSS) have 
increased significantly.

• The growing impact of TD (Technical Debt) has 
become the biggest obstacle to making changes 
to existing code bases



Estimate 2020

• Estimate 3 Pillar global

• $260 billion worth of failed projects 
cancelled

• Operational disruptions $1.56 trillion 



More than just 
statistics

• No more isolated incidents

• Deep-seated, systemic 
inefficiencies

• Significant strategic business risk

• Broad failure in planning, 
execution and quality assurance 
processes

• High rate of failure and high 
costs: vicious cycle?



The culture of mediocracy

• We accept the risk
• We put it on the backlog
• We accept the technical debt
• This is a non-functional
• This is a feature request
• We don't accept the bug
• 'Do we not strike out with security'



And it's a job ....









It's just 
money: 
there 
will be 
no 
deaths



'Aviation is all about life and death'



Therac-25 (1985-1987)

• The Therac-25 was a radiation therapy 
machine used to treat cancer. Due to 
software errors, patients sometimes received 
extremely high doses of radiation.

• At least five patients died as a direct result of 
the overdoses, and several others were 
seriously injured.



Toyota Onboard 
Software (2009-2010)

• Problems were reported with the 
onboard software of Toyota vehicles, 
leading to unintended acceleration 
and braking problems.

• Several fatalities were reported as a 
result of these software problems, 
although the exact number of 
fatalities is difficult to determine.



Causes Toyota

• Spaghetti code; legacy: Unorganised, complex code 
("spaghetti code") makes maintenance and debugging difficult

• No standards: Ignoring coding standards leads to many 
defects. (For example, Toyota did not follow voluntary MISRA-C 
standard and had 81,514 rule violations in the engine software. 
This equals thousands of potential bugs.

• Global variables chaos: Good design minimises global 
variables, but in bad code there are thousands of them. 
(Toyota's engine code had &gt;10,000 global variables, while 
the academic norm is 0). This indicates lack of structure and 
modularity.



Crowdstrike
• CrowdStrike incident: 

• When CrowdStrike, a reputable security 
company, was itself hit by a glitch, it became 
clear that even the experts are vulnerable to 
mistakes

• Windows 10 or 11 problem

• The impact of poor validation became 
apparent

• Aviation example: 5,078

• Delta Air Lines claims ½ billion in damages

• CrowdStrike blames Delta's lack of security



Patriot systeem 
(1991)

• During the Gulf War

• Due to a rounding error, a Scud missile is 
not intercepted during the Gulf War (timing 
issue)

• Dhahran, Saudi Arabia

• 28 dead



Infusion pomp

• Multiple suppliers

• Multiple software bugs

• Several deaths



Supplements affair

• The Bulgarian fraud

• Dutch government claimed back thousands of euros in 
benefits from parents based on automated decisions

• There was no adequate validation of data, and human 
circumstances were not taken into account

• Thousands of parents were wrongly accused of fraud, 
leading to financial and social disruption

• Human touch and validation are often lacking in 
complex, automated processes, leading to serious errors



Boeing 737 Max: flawed 
validation 
• Remote management

• Over-reliance on Technology: Boeing introduced a new 
automation system (MCAS) without sufficient pilot training or 
thorough testing.

• Reliance on assumptions: The company assumed pilots 
would react quickly to system failures, but these assumptions 
were not validated in realistic scenarios.

• Errors in validation process: Internal reports about the 
system's risks were ignored. Crucial safety checks were 
missing in the rush to get the device to market.

• Consequences: Two fatal crashes (Lion Air and Ethiopian 
Airlines) and global grounding of the 737 Max, with thousands 
of lives affected.

• Lesson: Validation processes must be complete and 
impartial. Assumptions without thorough testing can have 
catastrophic consequences.



Failure to validate a bad and 
expensive joke
• Online scams in US estimated at $8.8 billion

• The Boeing affair

• Damage 737-Max affair between $20 billion and 
$30 billion

• Corporate recovery: $25 billion

• The benefits affair: 

• Bulgarian fraud: up to €4 million

• Benefits affair: 14 billion in 2024 and the counter 
is ticking away 



Not learning from the 
past – as well

• 1991 - SAS flight 751

• Ice in the engine

• Automatic Thrust Restoration-system



Techno-optimism

• This time we do make a perfect piece of software

• Belief in Unlimited Potential: Techno-optimism refers 
to the belief that technology can solve most, if not all, 
of humanity's problems

• No regard for risks

• Overturning critical voices

• Reduced sense of reality



Interplay of multiple causes

• Poor requirements lead to poor design/logic

• Poor collaboration leads to incomplete palette of requirements

• Poor consultation/collaboration leads to changing 
requirements

• Bad designs lead to bad code

• Unrealistic timelines lead to shortcuts and: bad code

• Tight timelines lead: to less testing

• Cutting corners leads to backlog

• Bad code leads to technical dept

• Bad code leads to security problems 



Causes - Maintenance is forgotten

• Software is seen as 'finished'

• Legacy systems without ownership.

• Example: COBOL systems in banks and 
governments



We rely on 
each other's 

software



Falen: next level – 
Vibe coding

1. Collect large amounts of code written 
under pressure

2. Feed these to an AI model for training

3. Appoint people to interact with model

4. Above all, do not teach them programming

5. Choose a language that is hard to read 
(e.g. Perl or Javascript)

6. Choose a core business process

7. Get new software vibe coded



Succesfactoren 
(Standish Group) 
• Executive support - management supports 

employees emotionally and financially

• Emotional maturity - a set of behaviours 
that describe how employees work 
together

• User engagement - encouraging users to 
share their experiences and taking their 
opinions into account

• Optimisation - increasing business 
efficiency and optimising processes

• Skilled personnel - describes the high skill 
level of employees in technology and 
business



Succesfactoren 
(Standish Group) 
• SAME (Standard Architectural Management 

Environment) - een verzameling praktijken met 
betrekking tot softwareproductie, -
implementatie en -gebruik

• Vaardige kennis van Agile - bepaalt de kennis 
en vaardigheden in Agile methodologie

• Bescheiden uitvoering - beschrijft processen 
die bestaan uit eenvoudige, geautomatiseerde 
elementen en beperkt gebruik van 
projectmanagementtools

• Projectmanagementexpertise - een set 
vaardigheden in projectmanagement

• Duidelijke bedrijfsdoelstellingen - het 
vermogen om projectdoelstellingen te 
begrijpen en af te stemmen op 
bedrijfsdoelstellingen



Success factors (Standish)
• Good place. A good place is a working environment where the team works 

on software. It consists of a sponsor, a team and all other employees who 
work with them during the project. The influence of other collaborators 
can have a negative or positive impact on software development, so it is 
important to continuously update and improve the professional 
qualifications of collaborators.

• Good team. A good team drives the project and has the greatest impact 
on the final result. The sponsor motivates, guides and instructs the team. 
But ultimately it depends on the team whether it will be able to deliver the 
expected results. One of the Standish Group's recommendations is to 
form small teams.

• Good sponsor. The Standish Group defines a good sponsor as the heart of 
the project, without which it cannot exist. According to them, the most 
important aspect that leads to success is continuously improving a 
sponsor's skills so that they can effectively lead and support the team 
during the project. At the same time, this is the easiest part of the project 
to improve because each team has only one sponsor.



Standish: Agile rocks

We can summarise the main recommendations as follows:

1. Teams should use the Agile methodology.

2. Instead of creating projects, we should focus on continuous and small 
steps.

3. We should focus on improving factors such as a good place, a good team 
and a good sponsor.

4. We should avoid assigning managers to projects and reduce the use of 
project management tools



What else can you do?

• Test culture
• Security by Design
• Testing
• Taking problems seriously
• No sixes culture
• Good CI/CD pipeline
• Focus on code quality
• Focus on security
• Sound, regular and competent training
• TESTING! 



Can it really be done?

• What sometimes there is time 
pressure

• You can't arrange everything



Coronamelder: 
privacy first, security first

Design
• Decentralised system
• No requesting information from users
• Tight retention
• As difficult as possible to link to person
• No traceability to device
• Only necessary data
• Only transmit data after verifications
• App does not see codes

Validated
• Purpose limitation in law
• Penal provision
• No statistics party
• Cryptographically correct
• (sign everything)
• No backups
• Detecting misuse



You can make a difference
for one goal




	Slide 1: Security is ROT!
	Slide 2: Security is rot!
	Slide 3: Regulation
	Slide 4: It has been chef sache all along General Data Protection Regulation (GDPR)
	Slide 5: NIS2 Directive
	Slide 6: Management Responsibility
	Slide 7: What should management do?
	Slide 8: Who’s responsible?
	Slide 9: Organisation
	Slide 10: An abritrary incident 📆 Friday
	Slide 11: Later that day
	Slide 12: A couple of hours later
	Slide 13: An arbritrary incident - Sunday
	Slide 14: 💥 Monday – the meeting
	Slide 15: The aftermath
	Slide 16
	Slide 17: Security triangle
	Slide 18: Who’s responsible?
	Slide 19: So if… if responsibilities are vague…
	Slide 20: Who are you really angry at?
	Slide 21: Karel was talking to a manager
	Slide 22: If you're not at the table, you're on the menu
	Slide 23: Karel wasn’t a chief (as many CISO’s aren’t)
	Slide 24: When you are talking to the board
	Slide 25: Karel’s safe workplace
	Slide 26: Insecurity at work (studies)
	Slide 27: Cost of information security
	Slide 28: Technology
	Slide 29: Flying past venus
	Slide 30: At launch
	Slide 31: Phobos 1
	Slide 32: June 4th 1996 
	Slide 33: Ariane 4 5
	Slide 34: Onvoldoende systeemtests
	Slide 35: Bad testing
	Slide 36: Symptoms of bad software
	Slide 37: Chaos Report – Standish Group 
	Slide 38: Zibdo survey is more negative 
	Slide 39: Bad software an expensive hobby
	Slide 40: Estimate 2020
	Slide 41: More than just statistics
	Slide 42: The culture of mediocracy
	Slide 43: And it's a job ....
	Slide 44
	Slide 45
	Slide 46
	Slide 47: It's just money: there will be no deaths
	Slide 48: 'Aviation is all about life and death'
	Slide 49: Therac-25 (1985-1987)
	Slide 50: Toyota Onboard Software (2009-2010)
	Slide 51: Causes Toyota
	Slide 52: Crowdstrike
	Slide 53: Patriot systeem (1991)
	Slide 54: Infusion pomp
	Slide 55: Supplements affair
	Slide 56: Boeing 737 Max: flawed validation 
	Slide 57: Failure to validate a bad and expensive joke
	Slide 58: Not learning from the past – as well
	Slide 59: Techno-optimism
	Slide 60: Interplay of multiple causes
	Slide 61: Causes - Maintenance is forgotten
	Slide 62: We rely on each other's software
	Slide 63: Falen: next level – Vibe coding
	Slide 64: Succesfactoren (Standish Group) 
	Slide 65: Succesfactoren (Standish Group) 
	Slide 66: Success factors (Standish)
	Slide 67: Standish: Agile rocks
	Slide 68: What else can you do?
	Slide 69: Can it really be done?
	Slide 70: Coronamelder:  privacy first, security first
	Slide 71: You can make a difference for one goal
	Slide 72

